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Problem 2. «Nonlinear Trio» 
 

In this problem, «nonlinear resistors» (aka varistors) are considered. In the case at hand, a volt-

age U across a varistor is proportional to the square of a current I flowing through the varistor (polarity 

is respected): | |U I I  . The factor  is specific for a given varistor. 
  

Part I: Nonlinearity and Direct Current. 
 

Suppose we have three identical (with the same ) varistors, three identical sources of DC volt-

age with negligible internal resistances, a conventional resistor, a diode, and an almost ideal ammeter. 

It is known that if a varistor or the conventional resistor are connected to a single voltage source, the 

current through the source equals 
0

1I   A. The elements listed above are assembled into the circuit 

shown in Fig. 1. A varistor is represented by a rectangle with a «wave» inside. 

 
 

Fig. 1. 
 

Figure 2 depicts the I-V curve of the diode. A scale of the voltage (horizontal) axis is not speci-

fied but it is known that a current equal to 0I  through the diode corresponds to a voltage which is 5 

times less than the EMF of a voltage source. 

 
 

Fig. 2. 
 

1.1. Write down a complete set of equations for the currents flowing in the circuit branches 

which appear vertical in Fig.1. The equations must include a voltage U across the parallel branches 

together with an EMF   of a voltage source, the resistance R of the conventional resistor, and the fac-

tor . 

1.2. Determine the ammeter readings with an accuracy of at least 10%. Neglect a resistance of 

connecting wires. Write the answer in amperes and indicate a confidence interval of the result. 
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Part II: Nonlinearity and Capacitor Discharge. 
 

Now let us connect a varistor with another factor  to a 

charged capacitor (see Fig. 3). If the connecting wires are sufficiently 

cooled down, they become superconductors and the capacitor will 

completely discharge in a time 02,00 t  s. Properties of the varistor 

are independent of temperature. 

2.1. Express 0t  via the capacitance C, the initial charge q0 of 

the capacitor, and the factor  of the varistor.   

 
 

Fig. 3. 
 

2.2. If the capacitor discharges only via the connecting wires at room temperature, the charge de-

creases by a factor of e in a time 1  ms (e is the base of the natural logarithm). What is the relation 

between  and the resistance r of the wires? Derive the corresponding equation. 

2.3. Determine a time t in which the circuit current decreases from the initial value 0I  to I , 

providing the capacitor discharges via the varistor at room temperature.  Write down the answer in 

terms of r, C, , I , and I0.  

2.4. Determine a time t1 in which the capacitor charge decreases by a factor of n = 10 000, 

providing the capacitor discharges through the connecting wires and the varistor at room temperature. 

Derive a formula in which t1 is expressed via t0, , and n, and evaluate the numerical value (in ms) with 

at least 10% accuracy.  
 

Part III: Nonlinearity and Damped Oscillations. 

 

In the next experiment the circuit consists of a capacitor, a 

varistor (with another factor ), and a superconducting inductor L 

(see Fig. 4). The connecting wires are also maintained in the su-

perconducting state. In this case, damped oscillations begin in the 

circuit and when the circuit current vanishes for the first time, the 

charge of the capacitor turns out to be less by 10% than its initial 

value. 
 

 

Fig. 4. 
 

3.1. Suppose that at some time before the first half of the oscillation cycle ended, the capacitor 

charge had decreased from an initial value 0q  to q. What is the circuit current at this moment? Express 

the answer in terms of , L, C, q, and q0.  It would be useful to remind that solution of a complex non-

linear equation of motion in mechanics is often significantly simplified if one tries to transform it into 

an equation for the rate of energy change. 

3.2. Determine how much of the initial capacitor energy was released as heat in the varistor until 

the capacitor charge first became zero. Evaluate the answer (in percent) with at least 10% accuracy 

(i.e. the error must not exceed 10% of the result). 

3.3. What part of the initial capacitor energy was released as heat in the varistor until the current 

first became zero? Evaluate the answer in percent.  

3.4. What part of the initial capacitor energy was released as heat in the varistor by the time the 

capacitor charge became zero for the second time? Evaluate the answer (in percent) with at least 10% 

accuracy (i.e. the error must not exceed 10% of the result). 

 

 

REMINDER. Factors  of varistors used in different parts of the problem are different!  
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Proposed Solution 
 

Part I 

1.1. Let us introduce the following notations: let U  be a common voltage across four  parallel 

branches of the circuit (between the upper and the lower conductors), and 4,3,2,1I  be the currents in the 

circuit branches (numbering from left to right, positive directions of the currents are shown by arrows 

in Fig. 1a). 

 
 

Fig. 1а. 

 

Let R  be a resistance of the conventional resistor. According to the problem statement, 
0

R
I




. 

Since the current and voltage of the varistor are related as | |U I I  , one obtains that 
2

0
I

 


. Sup-

pose that the I-V characteristic of the diode is given by an equation 0
( / )

D D
I I f U   . Then, the cur-

rents in the circuit branches can be expressed via the voltage across them as: 
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where 
U

x 


 (the correctness of the chosen directions of the currents is verified in the course of the 

solution). Besides, the currents must satisfy the law of conservation of charge, i.e. 4132 IIII  . 

Thus, x  can be found from an equation )1(1
2

1 xfx
x

x  .  

1.2. According to the problem statement, the current through the diode equals 0I  when the volt-

age across the diode is 5 times less than  . Therefore, 1)2,0( f , which allows one to «shift» the di-

ode I-V curve on a diagram in which the currents through other branches are plotted (the red curve in 

Fig. 1b) and to solve the above equation graphically: plot the left-hand side of the equation and then 

plot the right-hand side by adding the contributions of the currents at each x. 

According to the diagram, the ammeter readings (corresponding to the current through the resis-

tor) are A
(0, 27 0,02)I   A. The error meets the accuracy requirement specified in the problem 

statement even under a moderate construction accuracy, in fact, it can be improved. 
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Fig. 1b. 

 

Note: The result obtained by the graphical method can be significantly improved by using an 

«algebraic» approach. Even a crude construction of the plot makes it obvious that the answer is close 

to x ≈ 0,7, and the current I4 flowing through the diode is near 1,5 A. One can also notice that the tan-

gent of the I-V curve near this value of the current is very close to 1. Then one can do the following. 

Replace the diode I-V curve on the second plot near x ≈ 0,7 with xxf x 109|)1( 7,0   . Assuming 

0,7x     and expanding all functions up to terms linear in  , one obtains 

1 1 1
1,7 0,35 2,3 11

2 1,7 1, 4

 
       

 
. It follows that 0,0343  , so the correction is indeed 

small and a computational error here is less than 3%. A graphical error can be estimated as 2%, hence, 

A 0
(1 ) (0, 266 0,011)I I x     A. One can do the next step and evaluate the tangent to the diode I-V 

curve at the current equal to 1,6 А (this is the current through the diode obtained by the «crude» ap-

proximation) and evaluate the second derivatives, then the I-V curve can be described by a quadratic 

expression. In so doing, a computational error becomes negligible compared to the graphical error and 

the accuracy improves even more:  A
(0, 267 0,005)I   . However, the accuracy of graphical method 

itself suffices for solving the problem provided the construction is accurate. Nevertheless, there is an 

additional bonus reserved in evaluation criteria for those contesters who would reduce the error two-

fold compared to the error specified in the problem statement. Notice that an «almost precise» answer 

obtained by means of an analytic equation for the diode I-V curve (this equation is known to the au-

thors) is: A
(0, 26723 0,00001)I    A. 
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Part II 

2.1. Again, we use the nonlinear current-voltage relation of a varistor, | |U I I  . A discharge 

current flowing through the varistor via superconducting wires is related to the capacitor charge as 

2q q
I I

C C
   


 (the discharge current does not change direction and can be considered as posi-

tive). An equation for the rate of charge change is 
dq q

I
dt C

   


 (the capacitor charge decreases), 

so the total discharge time equals 
0

0 0

0

2

q
dq

t C Cq
q

    (here 0q  is the initial capacitor charge).  

2.2. It is clear from the problem statement that   is a time constant of the capacitor discharging 

through wires at normal temperature, i.e. rC  . 

2.3. Let us write an equation for the discharge through the varistor and wires of a resistance r .  

In this case, 2 2
( )

q
I rI q C I rI

C
       , so (2 )

dq dI
I C I r

dt dt
     . Therefore, the time, 

in which the discharge current decreases from 0I  to I , equals 

0

0

0
2 ln 2 ( )

I

I

Ir
t C dI rC C I I

I I

  
         

   
 . 

2.4. The initial current is determined from the equation 

20 0

0 0 0 2

4
1 1

2

q qr
I rI I

C Cr

 
       

  

. Then the current at the time when the charge has decreased 

by a factor of n  equals 0

2

4
1 1

2

qr
I

nCr

 
   

  

. It is easy to see that 
2

0 0 0

2 2 2

4 4

( )

q Cq t

Cr Cr

 
 


, so the de-

sired time equals  

2 2
0 2 2 20

0
2

0

( / ) 1 1
ln

( / ) 1 1

t t
t t

nt n

   
        
    

. 

One can evaluate the numerical value using this formula (this gives 873,25t ms), or one can try to 

simplify the formula first. To do this, notice that 
2

0

2
1

t



 and 

2

0

2
1

t

n



.  This gives 

0

0

2
ln 25,9

n
t t

e t

 
    

 
ms. The answer clearly meets the accuracy requirements.  

Comments: The result is interesting since a small resistance (numerically,   is only 5% of 0t ) 

changes the result almost by 30%! Actually, the resistance of wires changes significantly the behavior 

of )(tq  only near 0q : it «stretches» the discharge in time. 

 

Part III 

3.1. Let us write an equation of oscillations in the circuit. As before, assume the discharge cur-

rent of the capacitor to be 0
dt

dq
I  (i.e. for now we limit a solution to the first «half-cycle»): 

2 2q dI dI q
I L I

C dt dt L LC


      . To analyze the rates of change of the capacitor charge and the in-

ductor energy it would suffice to relate the charge and the current, if time dependence of these quanti-

ties is not necessary. Now, let us recall how one evaluates the rate of change of kinetic energy in me-

chanics: 

2
( , )

( , )    ( , )    
2

dV VdV d V F x V
m F x V m F x V

dt Vdt dx m

 
     

 
. By analogy, the above 
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formula for the time derivative of the current can be transformed as: 
2

1 ( )

2

dI dI dI d I
I I

dt Idt dq dq
     . 

Then, one obtains an equation for )(
2

qI : 
2

2( ) 2 2d I q
I

dq L LC


   . 

The same equation follows if one applies a similar argument to the rate of change of the energy stored 

in the circuit.  

The right-hand side can be removed by means of a linear substitution
2
( )I q Aq B   which 

transforms the equation into identity:   

2

2

2 2

( )
2 2

0

A
q LL LC

I q
C C

A B
L

 
    

   
    

  

. 

Then one can change variables by writing:  

2 2

2
( ) ( ) ( ) ( )

2

q L
I q I q F q F q

C C
    

 
, 

so the equation becomes 
2

0
dF

F
dq L


  . Obviously, 

2
( ) expF q D q

L

 
   

 
, (where constD  ), so 

)(
2

qI  during the first «half-cycle» of oscillation is: 

2

2

2
( ) exp .

2

q L
I q D q

C C L

 
     
   

 

If 0q  is the initial capacitor charge, 0)( 0
2

qI . Therefore, 
0 0

1 2
exp

2

L
D q q

C L

   
       

    
, 

which gives finally: 

0 0

1 2
( ) exp ( )

2 2

L L
I q q q q q

C L

     
         

      
. 

3.2. The current vanishes first time at the end of the first oscillation half-cycle when the capaci-

tor charge changes polarity and becomes equal to 01 9,0 qq  . Therefore, 0)9,0( 0
2

 qI  and this 

equation allows one to determine the initial capacitor charge.  It is convenient to introduce a variable 

0

2
z q

L


 , then 

z

z
eezz

zz

9,01

1
0)1(9,01

9,19,1






 . This equation can be solved graphically 

(it is a plausible method).  However, it would be better to solve it numerically (this is quite easy, if 

contesters are allowed to use Excel or a programmable calculator). The equation can be «manually» 

solved as well. To do this, one can first notice from the plot that 1z  and then expand both sides in 

powers of z  up to the terms of the forth order (this is necessary since zero and first order terms cancel 

out):  

433224
4

3
3

2
2

)9,0(9,1)9,0(9,19,09,1
24

)9,1(

6

)9,1(

2

)9,1(
zzzzzz  . 

This gives a quadratic equation for z , its positive root is 17,0z . The error is of the order of 

%3
2
z , thereby meeting the accuracy requirement (the expansion up to 3

z yields a linear equation 

but the error is of the order z  and this is not enough; indeed, in this approximation 24,0z , which 

deviates from the correct answer by more than 10%). A numerical answer obtained with the help of 

Excel equals 0001,01665,0 z . 
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The initial capacitor energy equals 
2 2

20

0 2
2 8

q L
E z

C C
 


. When the capacitor charge becomes ze-

ro at the first time, the current through the inductor coil reaches the maximum. The energy stored in 

the coil at this moment is also maximal and equal to  
2

0 0 0 2

(0) 2 1 (1 )
(0) exp 2

2 2 2 2

z

L

LI L L L z e
E q q E

C L z


       

          
      

. 

Obviously, the heat generated in the varistor (and only there) equals )0(01 LEEQ  , so 

1044,0
)1(1

21
2

0

1 





z

ez

E

Q z

) at 1665,0z ; for 17,0z  one obtains 1064,0
0

1 
E

Q
). Thus, about 

(10-11)% of the initial energy has been lost until this time. 

3.3. The energy loss during the first «half-cycle» is easily found by the loss of capacitor charge: 

0

2
0

2
0

1 19,0
2

)9,0(

2
E

C

q

C

q
Q 


 , i.e. %19

0

1 


E

Q
. 

3.4. The capacitor charge becomes zero the second time during the second «half-cycle», when 

the current switches direction. The solution must be redone for the second «half-cycle», although the 

line of arguments remains the same: simply replace the magnitude of the initial capacitor charge with 

0,9q0. The amount of heat generated when the charge has changed from 01 9,0 qq   to zero (the se-

cond time) can be found from the condition  
2 0,9

1 1 0 2

(0) 2 1 (1 0,9 )
(0) | | exp | | 2

2 2 2 2

z

L

LI L L L z e
E q q E

C L z

        
           

      
. 

Hence, %272665,0
)9,01(1

21
2

9,0

0

2 





z

ez

E

Q z

. 

 


